googleapis/python-bigquery-sqlalchemy
Fork: 132 Star: 440 (更新于 2025-01-03 14:37:02)
license: MIT
Language: Python .
SQLAlchemy dialect for BigQuery
最后发布版本: v1.12.0 ( 2024-09-27 02:49:37)
SQLAlchemy Dialect for BigQuery
|GA| |pypi| |versions|
SQLALchemy Dialects
_
-
Dialect Documentation
_ -
Product Documentation
_
.. |GA| image:: https://img.shields.io/badge/support-GA-gold.svg :target: https://github.com/googleapis/google-cloud-python/blob/main/README.rst#general-availability .. |pypi| image:: https://img.shields.io/pypi/v/sqlalchemy-bigquery.svg :target: https://pypi.org/project/sqlalchemy-bigquery/ .. |versions| image:: https://img.shields.io/pypi/pyversions/sqlalchemy-bigquery.svg :target: https://pypi.org/project/sqlalchemy-bigquery/ .. _SQLAlchemy Dialects: https://docs.sqlalchemy.org/en/14/dialects/ .. _Dialect Documentation: https://googleapis.dev/python/sqlalchemy-bigquery/latest .. _Product Documentation: https://cloud.google.com/bigquery/docs/
Quick Start
In order to use this library, you first need to go through the following steps:
-
Select or create a Cloud Platform project.
_ - [Optional]
Enable billing for your project.
_ -
Enable the BigQuery Storage API.
_ -
Setup Authentication.
_
.. _Select or create a Cloud Platform project.: https://console.cloud.google.com/project .. _Enable billing for your project.: https://cloud.google.com/billing/docs/how-to/modify-project#enable_billing_for_a_project .. _Enable the BigQuery Storage API.: https://console.cloud.google.com/apis/library/bigquery.googleapis.com .. _Setup Authentication.: https://googleapis.dev/python/google-api-core/latest/auth.html
Installation
Install this library in a virtualenv
_ using pip. virtualenv
_ is a tool to
create isolated Python environments. The basic problem it addresses is one of
dependencies and versions, and indirectly permissions.
With virtualenv
_, it's possible to install this library without needing system
install permissions, and without clashing with the installed system
dependencies.
.. _virtualenv
: https://virtualenv.pypa.io/en/latest/
Supported Python Versions ^^^^^^^^^^^^^^^^^^^^^^^^^ Python >= 3.8
Unsupported Python Versions ^^^^^^^^^^^^^^^^^^^^^^^^^^^ Python <= 3.7.
Mac/Linux ^^^^^^^^^
.. code-block:: console
pip install virtualenv
virtualenv <your-env>
source <your-env>/bin/activate
<your-env>/bin/pip install sqlalchemy-bigquery
Windows ^^^^^^^
.. code-block:: console
pip install virtualenv
virtualenv <your-env>
<your-env>\Scripts\activate
<your-env>\Scripts\pip.exe install sqlalchemy-bigquery
Installations when processing large datasets ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When handling large datasets, you may see speed increases by also installing the
bqstorage
dependencies. See the instructions above about creating a virtual
environment and then install sqlalchemy-bigquery
using the bqstorage
extras:
.. code-block:: console
source <your-env>/bin/activate
<your-env>/bin/pip install sqlalchemy-bigquery[bqstorage]
Usage
SQLAlchemy ^^^^^^^^^^
.. code-block:: python
from sqlalchemy import *
from sqlalchemy.engine import create_engine
from sqlalchemy.schema import *
engine = create_engine('bigquery://project')
table = Table('dataset.table', MetaData(bind=engine), autoload=True)
print(select([func.count('*')], from_obj=table().scalar()))
Project ^^^^^^^
project
in bigquery://project
is used to instantiate BigQuery client with the specific project ID. To infer project from the environment, use bigquery://
– without project
Authentication ^^^^^^^^^^^^^^
Follow the Google Cloud library guide <https://google-cloud-python.readthedocs.io/en/latest/core/auth.html>
_ for authentication.
Alternatively, you can choose either of the following approaches:
- provide the path to a service account JSON file in
create_engine()
using thecredentials_path
parameter:
.. code-block:: python
# provide the path to a service account JSON file
engine = create_engine('bigquery://', credentials_path='/path/to/keyfile.json')
- pass the credentials in
create_engine()
as a Python dictionary using thecredentials_info
parameter:
.. code-block:: python
# provide credentials as a Python dictionary
credentials_info = {
"type": "service_account",
"project_id": "your-service-account-project-id"
}
engine = create_engine('bigquery://', credentials_info=credentials_info)
Location ^^^^^^^^
To specify location of your datasets pass location
to create_engine()
:
.. code-block:: python
engine = create_engine('bigquery://project', location="asia-northeast1")
Table names ^^^^^^^^^^^
To query tables from non-default projects or datasets, use the following format for the SQLAlchemy schema name: [project.]dataset
, e.g.:
.. code-block:: python
# If neither dataset nor project are the default
sample_table_1 = Table('natality', schema='bigquery-public-data.samples')
# If just dataset is not the default
sample_table_2 = Table('natality', schema='bigquery-public-data')
Batch size ^^^^^^^^^^
By default, arraysize
is set to 5000
. arraysize
is used to set the batch size for fetching results. To change it, pass arraysize
to create_engine()
:
.. code-block:: python
engine = create_engine('bigquery://project', arraysize=1000)
Page size for dataset.list_tables ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
By default, list_tables_page_size
is set to 1000
. list_tables_page_size
is used to set the max_results for dataset.list_tables
_ operation. To change it, pass list_tables_page_size
to create_engine()
:
.. _dataset.list_tables
: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/list
.. code-block:: python
engine = create_engine('bigquery://project', list_tables_page_size=100)
Adding a Default Dataset ^^^^^^^^^^^^^^^^^^^^^^^^
If you want to have the Client
use a default dataset, specify it as the "database" portion of the connection string.
.. code-block:: python
engine = create_engine('bigquery://project/dataset')
When using a default dataset, don't include the dataset name in the table name, e.g.:
.. code-block:: python
table = Table('table_name')
Note that specifying a default dataset doesn't restrict execution of queries to that particular dataset when using raw queries, e.g.:
.. code-block:: python
# Set default dataset to dataset_a
engine = create_engine('bigquery://project/dataset_a')
# This will still execute and return rows from dataset_b
engine.execute('SELECT * FROM dataset_b.table').fetchall()
Connection String Parameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
There are many situations where you can't call create_engine
directly, such as when using tools like Flask SQLAlchemy <http://flask-sqlalchemy.pocoo.org/2.3/>
. For situations like these, or for situations where you want the Client
to have a default_query_job_config <https://googlecloudplatform.github.io/google-cloud-python/latest/bigquery/generated/google.cloud.bigquery.client.Client.html#google.cloud.bigquery.client.Client>
, you can pass many arguments in the query of the connection string.
The credentials_path
, credentials_info
, credentials_base64
, location
, arraysize
and list_tables_page_size
parameters are used by this library, and the rest are used to create a QueryJobConfig <https://googlecloudplatform.github.io/google-cloud-python/latest/bigquery/generated/google.cloud.bigquery.job.QueryJobConfig.html#google.cloud.bigquery.job.QueryJobConfig>
_
Note that if you want to use query strings, it will be more reliable if you use three slashes, so 'bigquery:///?a=b'
will work reliably, but 'bigquery://?a=b'
might be interpreted as having a "database" of ?a=b
, depending on the system being used to parse the connection string.
Here are examples of all the supported arguments. Any not present are either for legacy sql (which isn't supported by this library), or are too complex and are not implemented.
.. code-block:: python
engine = create_engine(
'bigquery://some-project/some-dataset' '?'
'credentials_path=/some/path/to.json' '&'
'location=some-location' '&'
'arraysize=1000' '&'
'list_tables_page_size=100' '&'
'clustering_fields=a,b,c' '&'
'create_disposition=CREATE_IF_NEEDED' '&'
'destination=different-project.different-dataset.table' '&'
'destination_encryption_configuration=some-configuration' '&'
'dry_run=true' '&'
'labels=a:b,c:d' '&'
'maximum_bytes_billed=1000' '&'
'priority=INTERACTIVE' '&'
'schema_update_options=ALLOW_FIELD_ADDITION,ALLOW_FIELD_RELAXATION' '&'
'use_query_cache=true' '&'
'write_disposition=WRITE_APPEND'
)
In cases where you wish to include the full credentials in the connection URI you can base64 the credentials JSON file and supply the encoded string to the credentials_base64
parameter.
.. code-block:: python
engine = create_engine(
'bigquery://some-project/some-dataset' '?'
'credentials_base64=eyJrZXkiOiJ2YWx1ZSJ9Cg==' '&'
'location=some-location' '&'
'arraysize=1000' '&'
'list_tables_page_size=100' '&'
'clustering_fields=a,b,c' '&'
'create_disposition=CREATE_IF_NEEDED' '&'
'destination=different-project.different-dataset.table' '&'
'destination_encryption_configuration=some-configuration' '&'
'dry_run=true' '&'
'labels=a:b,c:d' '&'
'maximum_bytes_billed=1000' '&'
'priority=INTERACTIVE' '&'
'schema_update_options=ALLOW_FIELD_ADDITION,ALLOW_FIELD_RELAXATION' '&'
'use_query_cache=true' '&'
'write_disposition=WRITE_APPEND'
)
To create the base64 encoded string you can use the command line tool base64
, or openssl base64
, or python -m base64
.
Alternatively, you can use an online generator like www.base64encode.org <https://www.base64encode.org>_
to paste your credentials JSON file to be encoded.
Supplying Your Own BigQuery Client ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The above connection string parameters allow you to influence how the BigQuery client used to execute your queries will be instantiated. If you need additional control, you can supply a BigQuery client of your own:
.. code-block:: python
from google.cloud import bigquery
custom_bq_client = bigquery.Client(...)
engine = create_engine(
'bigquery://some-project/some-dataset?user_supplied_client=True',
connect_args={'client': custom_bq_client},
)
Creating tables ^^^^^^^^^^^^^^^
To add metadata to a table:
.. code-block:: python
table = Table('mytable', ...,
bigquery_description='my table description',
bigquery_friendly_name='my table friendly name',
bigquery_default_rounding_mode="ROUND_HALF_EVEN",
bigquery_expiration_timestamp=datetime.datetime.fromisoformat("2038-01-01T00:00:00+00:00"),
)
To add metadata to a column:
.. code-block:: python
Column('mycolumn', doc='my column description')
To create a clustered table:
.. code-block:: python
table = Table('mytable', ..., bigquery_clustering_fields=["a", "b", "c"])
To create a time-unit column-partitioned table:
.. code-block:: python
from google.cloud import bigquery
table = Table('mytable', ...,
bigquery_time_partitioning=bigquery.TimePartitioning(
field="mytimestamp",
type_="MONTH",
expiration_ms=1000 * 60 * 60 * 24 * 30 * 6, # 6 months
),
bigquery_require_partition_filter=True,
)
To create an ingestion-time partitioned table:
.. code-block:: python
from google.cloud import bigquery
table = Table('mytable', ...,
bigquery_time_partitioning=bigquery.TimePartitioning(),
bigquery_require_partition_filter=True,
)
To create an integer-range partitioned table
.. code-block:: python
from google.cloud import bigquery
table = Table('mytable', ...,
bigquery_range_partitioning=bigquery.RangePartitioning(
field="zipcode",
range_=bigquery.PartitionRange(start=0, end=100000, interval=10),
),
bigquery_require_partition_filter=True,
)
Threading and Multiprocessing ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Because this client uses the grpc
library, it's safe to
share instances across threads.
In multiprocessing scenarios, the best
practice is to create client instances after the invocation of
os.fork
by multiprocessing.pool.Pool
or
multiprocessing.Process
.
最近版本更新:(数据更新于 2024-10-18 18:29:27)
2024-09-27 02:49:37 v1.12.0
2024-04-18 19:21:05 v1.11.0
2024-02-29 04:58:37 v1.10.0
2024-02-21 06:30:24 v1.11.0.dev3
2024-02-02 02:07:21 v1.11.0.dev2
2024-01-31 03:55:43 v1.11.0.dev1
2024-01-26 03:47:46 v1.11.0.dev0
2024-01-18 05:22:06 v1.10.0rc1
2023-12-12 07:03:32 v1.9.0
2023-12-07 05:42:19 v1.9.0rc1
googleapis/python-bigquery-sqlalchemy同语言 Python最近更新仓库
2025-01-18 21:26:31 sunnypilot/sunnypilot
2025-01-17 23:34:10 Skyvern-AI/skyvern
2025-01-17 19:49:33 ultralytics/ultralytics
2025-01-17 19:12:03 XiaoMi/ha_xiaomi_home
2025-01-17 08:27:45 comfyanonymous/ComfyUI
2025-01-17 04:56:19 QuivrHQ/MegaParse