scikit-learn/scikit-learn
Fork: 25460 Star: 60434 (更新于 2024-12-13 05:10:39)
license: BSD-3-Clause
Language: Python .
scikit-learn: machine learning in Python
最后发布版本: 1.5.2 ( 2024-09-11 23:52:05)
.. -- mode: rst --
|Azure| |CirrusCI| |Codecov| |CircleCI| |Nightly wheels| |Black| |PythonVersion| |PyPi| |DOI| |Benchmark|
.. |Azure| image:: https://dev.azure.com/scikit-learn/scikit-learn/_apis/build/status/scikit-learn.scikit-learn?branchName=main :target: https://dev.azure.com/scikit-learn/scikit-learn/_build/latest?definitionId=1&branchName=main
.. |CircleCI| image:: https://circleci.com/gh/scikit-learn/scikit-learn/tree/main.svg?style=shield :target: https://circleci.com/gh/scikit-learn/scikit-learn
.. |CirrusCI| image:: https://img.shields.io/cirrus/github/scikit-learn/scikit-learn/main?label=Cirrus%20CI :target: https://cirrus-ci.com/github/scikit-learn/scikit-learn/main
.. |Codecov| image:: https://codecov.io/gh/scikit-learn/scikit-learn/branch/main/graph/badge.svg?token=Pk8G9gg3y9 :target: https://codecov.io/gh/scikit-learn/scikit-learn
.. |Nightly wheels| image:: https://github.com/scikit-learn/scikit-learn/workflows/Wheel%20builder/badge.svg?event=schedule :target: https://github.com/scikit-learn/scikit-learn/actions?query=workflow%3A%22Wheel+builder%22+event%3Aschedule
.. |PythonVersion| image:: https://img.shields.io/pypi/pyversions/scikit-learn.svg :target: https://pypi.org/project/scikit-learn/
.. |PyPi| image:: https://img.shields.io/pypi/v/scikit-learn :target: https://pypi.org/project/scikit-learn
.. |Black| image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/psf/black
.. |DOI| image:: https://zenodo.org/badge/21369/scikit-learn/scikit-learn.svg :target: https://zenodo.org/badge/latestdoi/21369/scikit-learn/scikit-learn
.. |Benchmark| image:: https://img.shields.io/badge/Benchmarked%20by-asv-blue :target: https://scikit-learn.org/scikit-learn-benchmarks
.. |PythonMinVersion| replace:: 3.9 .. |NumPyMinVersion| replace:: 1.19.5 .. |SciPyMinVersion| replace:: 1.6.0 .. |JoblibMinVersion| replace:: 1.2.0 .. |ThreadpoolctlMinVersion| replace:: 3.1.0 .. |MatplotlibMinVersion| replace:: 3.3.4 .. |Scikit-ImageMinVersion| replace:: 0.17.2 .. |PandasMinVersion| replace:: 1.1.5 .. |SeabornMinVersion| replace:: 0.9.0 .. |PytestMinVersion| replace:: 7.1.2 .. |PlotlyMinVersion| replace:: 5.14.0
.. image:: https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/doc/logos/scikit-learn-logo.png :target: https://scikit-learn.org/
scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.
The project was started in 2007 by David Cournapeau as a Google Summer
of Code project, and since then many volunteers have contributed. See
the About us <https://scikit-learn.org/dev/about.html#authors>
__ page
for a list of core contributors.
It is currently maintained by a team of volunteers.
Website: https://scikit-learn.org
Installation
Dependencies
scikit-learn requires:
- Python (>= |PythonMinVersion|)
- NumPy (>= |NumPyMinVersion|)
- SciPy (>= |SciPyMinVersion|)
- joblib (>= |JoblibMinVersion|)
- threadpoolctl (>= |ThreadpoolctlMinVersion|)
=======
**Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4.**
scikit-learn 1.0 and later require Python 3.7 or newer.
scikit-learn 1.1 and later require Python 3.8 or newer.
Scikit-learn plotting capabilities (i.e., functions start with ``plot_`` and
classes end with ``Display``) require Matplotlib (>= |MatplotlibMinVersion|).
For running the examples Matplotlib >= |MatplotlibMinVersion| is required.
A few examples require scikit-image >= |Scikit-ImageMinVersion|, a few examples
require pandas >= |PandasMinVersion|, some examples require seaborn >=
|SeabornMinVersion| and plotly >= |PlotlyMinVersion|.
User installation
If you already have a working installation of NumPy and SciPy,
the easiest way to install scikit-learn is using pip
::
pip install -U scikit-learn
or conda
::
conda install -c conda-forge scikit-learn
The documentation includes more detailed installation instructions <https://scikit-learn.org/stable/install.html>
_.
Changelog
See the changelog <https://scikit-learn.org/dev/whats_new.html>
__
for a history of notable changes to scikit-learn.
Development
We welcome new contributors of all experience levels. The scikit-learn
community goals are to be helpful, welcoming, and effective. The
Development Guide <https://scikit-learn.org/stable/developers/index.html>
_
has detailed information about contributing code, documentation, tests, and
more. We've included some basic information in this README.
Important links
- Official source code repo: https://github.com/scikit-learn/scikit-learn
- Download releases: https://pypi.org/project/scikit-learn/
- Issue tracker: https://github.com/scikit-learn/scikit-learn/issues
Source code
~~~~~~~~~~~
You can check the latest sources with the command::
git clone https://github.com/scikit-learn/scikit-learn.git
Contributing
~~~~~~~~~~~~
To learn more about making a contribution to scikit-learn, please see our
`Contributing guide
<https://scikit-learn.org/dev/developers/contributing.html>`_.
Testing
~~~~~~~
After installation, you can launch the test suite from outside the source
directory (you will need to have ``pytest`` >= |PyTestMinVersion| installed)::
pytest sklearn
See the web page https://scikit-learn.org/dev/developers/contributing.html#testing-and-improving-test-coverage
for more information.
Random number generation can be controlled during testing by setting
the ``SKLEARN_SEED`` environment variable.
Submitting a Pull Request
Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: https://scikit-learn.org/stable/developers/index.html
Project History
The project was started in 2007 by David Cournapeau as a Google Summer
of Code project, and since then many volunteers have contributed. See
the About us <https://scikit-learn.org/dev/about.html#authors>
__ page
for a list of core contributors.
The project is currently maintained by a team of volunteers.
Note: scikit-learn
was previously referred to as scikits.learn
.
Help and Support
Documentation
- HTML documentation (stable release): https://scikit-learn.org
- HTML documentation (development version): https://scikit-learn.org/dev/
- FAQ: https://scikit-learn.org/stable/faq.html
Communication
- Mailing list: https://mail.python.org/mailman/listinfo/scikit-learn
- Logos & Branding: https://github.com/scikit-learn/scikit-learn/tree/main/doc/logos
- Blog: https://blog.scikit-learn.org
- Calendar: https://blog.scikit-learn.org/calendar/
- Twitter: https://twitter.com/scikit_learn
- Stack Overflow: https://stackoverflow.com/questions/tagged/scikit-learn
- GitHub Discussions: https://github.com/scikit-learn/scikit-learn/discussions
- Website: https://scikit-learn.org
- LinkedIn: https://www.linkedin.com/company/scikit-learn
- Bluesky: https://bsky.app/profile/scikit-learn.org
- YouTube: https://www.youtube.com/channel/UCJosFjYm0ZYVUARxuOZqnnw/playlists
- Facebook: https://www.facebook.com/scikitlearnofficial/
- Instagram: https://www.instagram.com/scikitlearnofficial/
- TikTok: https://www.tiktok.com/@scikit.learn
- Mastodon: https://mastodon.social/@sklearn@fosstodon.org
- Discord: https://discord.gg/h9qyrK8Jc8
Citation
If you use scikit-learn in a scientific publication, we would appreciate citations: https://scikit-learn.org/stable/about.html#citing-scikit-learn
最近版本更新:(数据更新于 2024-10-04 21:44:54)
2024-09-11 23:52:05 1.5.2
2024-07-03 17:17:35 1.5.1
2024-05-22 00:37:08 1.5.0
2024-04-10 04:07:22 1.4.2
2024-02-16 00:07:32 1.4.1.post1
2024-02-14 18:12:43 1.4.1
2024-01-19 18:57:04 1.4.0-1
2023-10-25 16:23:32 1.3.2
2023-09-20 22:04:16 1.3.1
2023-06-30 16:07:27 1.3.0
主题(topics):
data-analysis, data-science, machine-learning, python, statistics
scikit-learn/scikit-learn同语言 Python最近更新仓库
2025-01-18 21:26:31 sunnypilot/sunnypilot
2025-01-17 23:34:10 Skyvern-AI/skyvern
2025-01-17 19:49:33 ultralytics/ultralytics
2025-01-17 19:12:03 XiaoMi/ha_xiaomi_home
2025-01-17 08:27:45 comfyanonymous/ComfyUI
2025-01-17 04:56:19 QuivrHQ/MegaParse