MyGit

DS4SD/docling

Fork: 774 Star: 15201 (更新于 2024-12-17 20:40:18)

license: MIT

Language: Python .

Get your documents ready for gen AI

最后发布版本: v2.12.0 ( 2024-12-14 02:27:01)

官方网址 GitHub网址

Docling

Docling

DS4SD%2Fdocling | Trendshift

arXiv Docs PyPI version PyPI - Python Version Poetry Code style: black Imports: isort Pydantic v2 pre-commit License MIT PyPI Downloads

Docling parses documents and exports them to the desired format with ease and speed.

Features

  • 🗂️ Reads popular document formats (PDF, DOCX, PPTX, XLSX, Images, HTML, AsciiDoc & Markdown) and exports to HTML, Markdown and JSON (with embedded and referenced images)
  • 📑 Advanced PDF document understanding including page layout, reading order & table structures
  • 🧩 Unified, expressive DoclingDocument representation format
  • 🤖 Easy integration with 🦙 LlamaIndex & 🦜🔗 LangChain for powerful RAG / QA applications
  • 🔍 OCR support for scanned PDFs
  • 💻 Simple and convenient CLI

Explore the documentation to discover plenty examples and unlock the full power of Docling!

Coming soon

  • ♾️ Equation & code extraction
  • 📝 Metadata extraction, including title, authors, references & language
  • 🦜🔗 Native LangChain extension

Installation

To use Docling, simply install docling from your package manager, e.g. pip:

pip install docling

Works on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.

More detailed installation instructions are available in the docs.

Getting started

To convert individual documents, use convert(), for example:

from docling.document_converter import DocumentConverter

source = "https://arxiv.org/pdf/2408.09869"  # document per local path or URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown())  # output: "## Docling Technical Report[...]"

More advanced usage options are available in the docs.

Documentation

Check out Docling's documentation, for details on installation, usage, concepts, recipes, extensions, and more.

Examples

Go hands-on with our examples, demonstrating how to address different application use cases with Docling.

Integrations

To further accelerate your AI application development, check out Docling's native integrations with popular frameworks and tools.

Get help and support

Please feel free to connect with us using the discussion section.

Technical report

For more details on Docling's inner workings, check out the Docling Technical Report.

Contributing

Please read Contributing to Docling for details.

References

If you use Docling in your projects, please consider citing the following:

@techreport{Docling,
  author = {Deep Search Team},
  month = {8},
  title = {Docling Technical Report},
  url = {https://arxiv.org/abs/2408.09869},
  eprint = {2408.09869},
  doi = {10.48550/arXiv.2408.09869},
  version = {1.0.0},
  year = {2024}
}

License

The Docling codebase is under MIT license. For individual model usage, please refer to the model licenses found in the original packages.

IBM ❤️ Open Source AI

Docling has been brought to you by IBM.

最近版本更新:(数据更新于 2024-12-17 20:40:21)

2024-12-14 02:27:01 v2.12.0

2024-12-12 16:16:08 v2.11.0

2024-12-10 00:28:47 v2.10.0

2024-12-09 17:33:57 v2.9.0

2024-12-03 23:16:48 v2.8.3

2024-12-03 18:47:31 v2.8.2

2024-11-29 21:04:49 v2.8.1

2024-11-27 21:29:33 v2.8.0

2024-11-26 23:01:35 v2.7.1

2024-11-20 23:36:53 v2.7.0

主题(topics):

ai, convert, document-parser, document-parsing, documents, docx, html, markdown, pdf, pdf-converter, pdf-to-json, pdf-to-text, pptx, tables, xlsx

DS4SD/docling同语言 Python最近更新仓库

2025-01-18 21:26:31 sunnypilot/sunnypilot

2025-01-17 23:34:10 Skyvern-AI/skyvern

2025-01-17 19:49:33 ultralytics/ultralytics

2025-01-17 19:12:03 XiaoMi/ha_xiaomi_home

2025-01-17 08:27:45 comfyanonymous/ComfyUI

2025-01-17 04:56:19 QuivrHQ/MegaParse