MyGit

v3.1.0

open-mmlab/mmdetection

版本发布时间: 2023-06-30 15:41:30

open-mmlab/mmdetection最新发布版本:v3.3.0(2024-01-05 14:24:15)

Highlights

Exciting Features

GLIP inference and evaluation

s multimodal vision algorithms continue to evolve, MMDetection has also supported such algorithms. This section demonstrates how to use the demo and eval scripts corresponding to multimodal algorithms using the GLIP algorithm and model as the example. Moreover, MMDetection integrated a gradio_demo project, which allows developers to quickly play with all image input tasks in MMDetection on their local devices. Check the document for more details.

Preparation

Please first make sure that you have the correct dependencies installed:

# if source
pip install -r requirements/multimodal.txt

# if wheel
mim install mmdet[multimodal]

MMDetection has already implemented GLIP algorithms and provided the weights, you can download directly from urls:

cd mmdetection
wget https://download.openmmlab.com/mmdetection/v3.0/glip/glip_tiny_a_mmdet-b3654169.pth

Inference

Once the model is successfully downloaded, you can use the demo/image_demo.py script to run the inference.

python demo/image_demo.py demo/demo.jpg glip_tiny_a_mmdet-b3654169.pth --texts bench

Demo result will be similar to this:

If users would like to detect multiple targets, please declare them in the format of xx . xx . after the --texts.

python demo/image_demo.py demo/demo.jpg glip_tiny_a_mmdet-b3654169.pth --texts 'bench . car .'

And the result will be like this one:

You can also use a sentence as the input prompt for the --texts field, for example:

python demo/image_demo.py demo/demo.jpg glip_tiny_a_mmdet-b3654169.pth --texts 'There are a lot of cars here.'

The result will be similar to this:

Evaluation

The GLIP implementation in MMDetection does not have any performance degradation, our benchmark is as follows:

Model official mAP mmdet mAP
glip_A_Swin_T_O365.yaml 42.9 43.0
glip_Swin_T_O365.yaml 44.9 44.9
glip_Swin_L.yaml 51.4 51.3

Users can use the test script we provided to run evaluation as well. Here is a basic example:

# 1 gpu
python tools/test.py configs/glip/glip_atss_swin-t_fpn_dyhead_pretrain_obj365.py glip_tiny_a_mmdet-b3654169.pth

# 8 GPU
./tools/dist_test.sh configs/glip/glip_atss_swin-t_fpn_dyhead_pretrain_obj365.py glip_tiny_a_mmdet-b3654169.pth 8

The result will be similar to this:

Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.428
Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.594
Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.466
Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.300
Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.477
Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.534
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.634
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.634
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.634
Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.473
Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.690
Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.789

XDecoder

Installation

# if source
pip install -r requirements/multimodal.txt

# if wheel
mim install mmdet[multimodal]

How to use it?

For convenience, you can download the weights to the mmdetection root dir

wget https://download.openmmlab.com/mmdetection/v3.0/xdecoder/xdecoder_focalt_last_novg.pt
wget https://download.openmmlab.com/mmdetection/v3.0/xdecoder/xdecoder_focalt_best_openseg.pt

The above two weights are directly copied from the official website without any modification. The specific source is https://github.com/microsoft/X-Decoder

For convenience of demonstration, please download the folder and place it in the root directory of mmdetection.

(1) Open Vocabulary Semantic Segmentation

cd projects/XDecoder
python demo.py ../../images/animals.png configs/xdecoder-tiny_zeroshot_open-vocab-semseg_coco.py --weights ../../xdecoder_focalt_last_novg.pt --texts zebra.giraffe

(2) Open Vocabulary Instance Segmentation

cd projects/XDecoder
python demo.py ../../images/owls.jpeg configs/xdecoder-tiny_zeroshot_open-vocab-instance_coco.py --weights ../../xdecoder_focalt_last_novg.pt --texts owl

(3) Open Vocabulary Panoptic Segmentation

cd projects/XDecoder
python demo.py ../../images/street.jpg configs/xdecoder-tiny_zeroshot_open-vocab-panoptic_coco.py --weights ../../xdecoder_focalt_last_novg.pt  --text car.person --stuff-text tree.sky

(4) Referring Expression Segmentation

cd projects/XDecoder
python demo.py ../../images/fruit.jpg configs/xdecoder-tiny_zeroshot_open-vocab-ref-seg_refcocog.py --weights ../../xdecoder_focalt_last_novg.pt  --text "The larger watermelon. The front white flower. White tea pot."

(5) Image Caption

cd projects/XDecoder
python demo.py ../../images/penguin.jpeg configs/xdecoder-tiny_zeroshot_caption_coco2014.py --weights ../../xdecoder_focalt_last_novg.pt

(6) Referring Expression Image Caption

cd projects/XDecoder
python demo.py ../../images/fruit.jpg configs/xdecoder-tiny_zeroshot_ref-caption.py --weights ../../xdecoder_focalt_last_novg.pt --text 'White tea pot'

(7) Text Image Region Retrieval

cd projects/XDecoder
python demo.py ../../images/coco configs/xdecoder-tiny_zeroshot_text-image-retrieval.py --weights ../../xdecoder_focalt_last_novg.pt --text 'pizza on the plate'
The image that best matches the given text is ../../images/coco/000.jpg and probability is 0.998

We have also prepared a gradio program in the projects/gradio_demo directory, which you can run interactively all the inference supported by mmdetection in your browser.

Models and results

Semantic segmentation on ADE20K

Prepare your dataset according to the docs.

Test Command

Since semantic segmentation is a pixel-level task, we don't need to use a threshold to filter out low-confidence predictions. So we set model.test_cfg.use_thr_for_mc=False in the test command.

./tools/dist_test.sh projects/XDecoder/configs/xdecoder-tiny_zeroshot_open-vocab-semseg_ade20k.py xdecoder_focalt_best_openseg.pt 8 --cfg-options model.test_cfg.use_thr_for_mc=False
Model mIoU mIOU(official) Config
xdecoder_focalt_best_openseg.pt 25.24 25.13 config

Instance segmentation on ADE20K

Prepare your dataset according to the docs.

./tools/dist_test.sh projects/XDecoder/configs/xdecoder-tiny_zeroshot_open-vocab-instance_ade20k.py xdecoder_focalt_best_openseg.pt 8
Model mIoU mIOU(official) Config
xdecoder_focalt_best_openseg.pt 10.1 10.1 config

Panoptic segmentation on ADE20K

Prepare your dataset according to the docs.

./tools/dist_test.sh projects/XDecoder/configs/xdecoder-tiny_zeroshot_open-vocab-panoptic_ade20k.py xdecoder_focalt_best_openseg.pt 8
Model mIoU mIOU(official) Config
xdecoder_focalt_best_openseg.pt 19.11 18.97 config

Semantic segmentation on COCO2017

Prepare your dataset according to the docs of (2) use panoptic dataset part.

./tools/dist_test.sh projects/XDecoder/configs/xdecoder-tiny_zeroshot_open-vocab-semseg_coco.py xdecoder_focalt_last_novg.pt 8 --cfg-options model.test_cfg.use_thr_for_mc=False
Model mIOU mIOU(official) Config
xdecoder-tiny_zeroshot_open-vocab-semseg_coco 62.1 62.1 config

Instance segmentation on COCO2017

Prepare your dataset according to the docs.

./tools/dist_test.sh projects/XDecoder/configs/xdecoder-tiny_zeroshot_open-vocab-instance_coco.py xdecoder_focalt_last_novg.pt 8
Model Mask mAP Mask mAP(official) Config
xdecoder-tiny_zeroshot_open-vocab-instance_coco 39.8 39.7 config

Panoptic segmentation on COCO2017

Prepare your dataset according to the docs.

./tools/dist_test.sh projects/XDecoder/configs/xdecoder-tiny_zeroshot_open-vocab-panoptic_coco.py xdecoder_focalt_last_novg.pt 8
Model PQ PQ(official) Config
xdecoder-tiny_zeroshot_open-vocab-panoptic_coco 51.42 51.16 config

Referring segmentation on RefCOCO

Prepare your dataset according to the docs.

./tools/dist_test.sh  projects/XDecoder/configs/xdecoder-tiny_zeroshot_open-vocab-ref-seg_refcocog.py xdecoder_focalt_last_novg.pt 8  --cfg-options test_dataloader.dataset.split='val'
Model text mode cIoU cIOU(official) Config
xdecoder_focalt_last_novg.pt select first 58.8415 57.85 config
xdecoder_focalt_last_novg.pt original 60.0321 - config
xdecoder_focalt_last_novg.pt concat 60.3551 - config

Note:

  1. If you set the scale of Resize to (1024, 512), the result will be 57.69.
  2. text mode is the RefCoCoDataset parameter in MMDetection, it determines the texts loaded to the data list. It can be set to select_first, original, concat and random.
    • select_first: select the first text in the text list as the description to an instance.
    • original: use all texts in the text list as the description to an instance.
    • concat: concatenate all texts in the text list as the description to an instance.
    • random: randomly select one text in the text list as the description to an instance, usually used for training.

Image Caption on COCO2014

Prepare your dataset according to the docs.

Before testing, you need to install jdk 1.8, otherwise it will prompt that java does not exist during the evaluation process

./tools/dist_test.sh projects/XDecoder/configs/xdecoder-tiny_zeroshot_caption_coco2014.py xdecoder_focalt_last_novg.pt 8
Model BLEU-4 CIDER Config
xdecoder-tiny_zeroshot_caption_coco2014 35.26 116.81 config

Gradio Demo

Please refer to https://github.com/open-mmlab/mmdetection/blob/dev-3.x/projects/gradio_demo/README.md for details.

Contributors

A total of 30 developers contributed to this release.

Thanks @jjjkkkjjj @lovelykite, @minato-ellie, @freepoet, @wufan-tb, @yalibian, @keyakiluo, @gihanjayatilaka, @i-aki-y, @xin-li-67, @RangeKing, @JingweiZhang12, @MambaWong, @lucianovk, @tall-josh, @xiuqhou, @jamiechoi1995, @YQisme, @yechenzhi, @bjzhb666, @xiexinch, @jamiechoi1995, @yarkable, @Renzhihan, @nijkah, @amaizr, @Lum1104, @zwhus, @Czm369, @hhaAndroid

相关地址:原始地址 下载(tar) 下载(zip)

查看:2023-06-30发行的版本